skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "San_Souci, Lance"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundThe global burden of Alzheimer's disease and related dementias is rapidly increasing, particularly in low- and middle-income countries where access to specialized healthcare is limited. Neuropsychological tests are essential diagnostic tools, but their administration requires trained professionals, creating screening barriers. Automated computational assessment presents a cost-effective solution for global dementia screening. ObjectiveTo develop and validate an artificial intelligence-based screening tool using the Trail Making Test (TMT), demographic information, completion times, and drawing analysis for enhanced dementia detection. MethodsWe developed: (1) non-image models using demographics and TMT completion times, (2) image-only models, and (3) fusion models. Models were trained and validated on data from the Framingham Heart Study (FHS) (N = 1252), the Long Life Family Study (LLFS) (N = 1613), and the combined cohort (N = 2865). ResultsOur models, integrating TMT drawings, demographics, and completion times, excelled in distinguishing dementia from normal cognition. In the LLFS cohort, we achieved an Area Under the Receiver Operating Characteristic Curve (AUC) of 98.62%, with sensitivity/specificity of 87.69%/98.26%. In the FHS cohort, we obtained an AUC of 96.51%, with sensitivity/specificity of 85.00%/96.75%. ConclusionsOur method demonstrated superior performance compared to traditional approaches using age and TMT completion time. Adding images captures subtler nuances from the TMT drawing that traditional methods miss. Integrating the TMT drawing into cognitive assessments enables effective dementia screening. Future studies could aim to expand data collection to include more diverse cohorts, particularly from less-resourced regions. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026